
Lesson 10 Guide: Deployment via the
Windows Store

Table of Contents
Designing for the Store ...2

Branding: Name, Logos, and Splash Screens ..7

Setting Up the Manifest ... 11

Testing With the Windows App Certification Kit .. 13

Submitting the App to the Windows Store .. 18

Designing for the Store
While an automated program called the Windows Application Certification Kit (WACK) is
used to ensure technical conformation, human testers evaluate the submitted app’s design,
usability, performance, and worthiness.

Here’s a brief checklist of some design considerations:

 Strive to use the Segoe font family.
 Use a title header that is 120–140 pixels in height.
 Maintain a left margin of 120 pixels in full landscape view.
 Maintain at least 20 pixels between interactive controls.
 Provide alternative designs or modifications for filled and snapped views. If the app

will support portrait orientation, it must provide alternative screen design for that
state.

 Manage data persistence to provide a continuous experience if the app is terminated
and then re-activated.

In this lesson, the user interface of the Take Me Out to the Ballgame assignment will be
modified for Store deployment.

In the Take Me Out to the Ballgame app, a 120-pixel left margin was established by
providing an additional column of 120 pixels. Column 0 is blank. Column 1 contains all the
UI controls (except the map), and the third column, Column 2, contains the Bing map
control.

Figure 1 – The app conforms to the standard 120-pixel left margin in the full landscape
state.

XAML Code Snippet for BasicPage1.xaml

<Grid Background="Green">
 <Grid Style="{StaticResource LayoutRootStyle}" >
 <Grid.RowDefinitions>
 <RowDefinition Height="140"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <TextBlock x:Name="pageTitle" Margin="120,0,0,40"
 Text="Take Me Out to the Ballgame" Style="{StaticResource
 PageHeaderTextStyle}" TextWrapping="Wrap"/>

 <Grid Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition x:Name="Col1A" Width="120"/>
 <ColumnDefinition x:Name="Col1B" Width="300"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Rectangle Grid.Row="1" Fill="DarkGreen"/>
 <Rectangle Grid.Row="1" Grid.Column="1" Fill="DarkGreen"/>
 <RadioButton x:Name="rbFromLocation" Grid.Row="1" Grid.Column="1"
 Content="Map FROM currentLocation . . ."
 HorizontalAlignment="Left" Height="23" Margin="0,13,0,0"
 VerticalAlignment="Top" Width="280" IsChecked="True"/>
 <RadioButton x:Name="rbFromAddress" Grid.Row="1" Grid.Column="1"
 Content="Map FROM this address . . . " HorizontalAlignment="Left"
 Height="23" Margin="0,50,0,0" VerticalAlignment="Top" Width="280"/>
 <TextBox x:Name ="txtAddress" Grid.Row="1" Grid.Column="1"
 HorizontalAlignment="Left" Height="55" Margin="0,80,0,0"
 TextWrapping="Wrap" Text="7050 S. 24th Street, Phoenix, AZ, 85042"
 VerticalAlignment="Top" Width="280"/>
 <TextBlock Grid.Row="1" Grid.Column="1" HorizontalAlignment="Left"
 Height="15" Margin="0,146,0,0" TextWrapping="Wrap" Text="...TO this
 ballpark:" VerticalAlignment="Top" Width="168" FontSize="14"/>
 <ComboBox x:Name="cmbTeam" Grid.Row="1" Grid.Column="1"
 HorizontalAlignment="Left" Margin="0,166,0,0" VerticalAlignment="Top"
 Width="280"/>
 <TextBox x:Name="txtItinerary" Grid.Row="1" Grid.Column="1"
 HorizontalAlignment="Left" Height="300"
 Margin="0,220,0,0" TextWrapping="Wrap" Text="Directions will be shown
 here." Foreground="White" Background="DarkGreen"
 VerticalAlignment="Top" BorderThickness="1"
 ScrollViewer.VerticalScrollBarVisibility="Auto" Width="280" />
 <Button x:Name="btnGetDirections" Grid.Row="1" Grid.Column="1" Content="Get
 Directions" HorizontalAlignment="Left" Height="51" Margin="0,545,0,0"
 VerticalAlignment="Top" Width="130" Click="GetDirections"/>
 <Button x:Name="btnCenterZoom" Grid.Row="1" Grid.Column="1" Content="Zoom
 Ballpark" HorizontalAlignment="Left" Height="51" Margin="150,545,0,0"
 VerticalAlignment="Top" Width="130" Click="ZoomBallpark"/>
 <bm:Map Grid.Row="1" Grid.Column="2" Credentials="Aj3Kc7F3dXDGy0-bmbnmurrKJYf-
 ylvzIuxzXproUTKIpyUblyfxgLTzgi9W_hy5" x:Name="myMap" />
 </Grid>
 </Grid>

The use of the blank column (“Col1A”) makes it easy to shift all the controls to the left in
the snapped visual state. A VisualStateManager is added to the XAML code. For the filled
state, the width of the left column is reduced to 20 pixels. Likewise the “pageTitle” textbox
is shifted left from 120 pixels to 20. These same animations occur in the Snapped state,
along with resizing and wrapping the title (“pageTitle” textbox). Note that the Visibility of
the map object (“myMap”) is set to Collapsed. This was done to compensate for a known

bug in the Bing maps that causes the app to crash if the map object has children levels in
the snapped view in Windows 8. Collapsing it seems to bypass the problem.

Addition to the XAML Code for BasicPage1.xaml
 <VisualStateManager.VisualStateGroups>
 <!-- Visual states reflect the application's view state -->
 <VisualStateGroup x:Name="ApplicationViewStates">
 <VisualState x:Name="FullScreenLandscape"/>
 <VisualState x:Name="Filled">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="Col1A"
 Storyboard.TargetProperty="Width">
 <DiscreteObjectKeyFrame KeyTime="0" Value="20"/>
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="pageTitle"
 Storyboard.TargetProperty="Margin">
 <DiscreteObjectKeyFrame KeyTime="0" Value="20,0,0,40"/>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="FullScreenPortrait"/>

 <VisualState x:Name="Snapped">
 <Storyboard>
 <!—Collapse column 0 to 20 pixels -->
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="Col1A"
 Storyboard.TargetProperty="Width">
 <DiscreteObjectKeyFrame KeyTime="0" Value="20"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="myMap"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Collapsed"/>
 </ObjectAnimationUsingKeyFrames>
 <!-- The title gets smaller and wraps when snapped -->
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="pageTitle"
 Storyboard.TargetProperty="Width">
 <DiscreteObjectKeyFrame KeyTime="0" Value="290"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="pageTitle"
 Storyboard.TargetProperty="VerticalAlignment">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Center"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="pageTitle"
 Storyboard.TargetProperty="Margin">
 <DiscreteObjectKeyFrame KeyTime="0" Value="20,0,0,0"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="pageTitle"
 Storyboard.TargetProperty="FontSize">
 <DiscreteObjectKeyFrame KeyTime="0" Value="38"/>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 </Grid>

</common:LayoutAwarePage>

Figure 2 – In the Filled state, the controls and title are shifted to the left by changing the
margins of the title and reducing the width of the left-most column in row 1.

Figure 3 – In the Snapped state, the title and controls are shifted to the left as they were
in the Filled state. The map is no longer visible, but directions can still be obtained.

Code was added to provide for data persistence if the app is terminated. The address,
selections, map, and directions are returned to their previous status when the app is re-
activated. The status of the controls and the latitude, longitude, and zoom levels of the map
are stored in the Save State method and re-instituted in the LoadState method. Note that a
timer was utilized to provide a slight 2-second delay in updating the map, allowing for the
screen to first be refreshed. See Lesson 8 for more information on application lifecycle
management techniques.

C# Code Snippet for BasicPage1.xaml Showing the Data Persistence/Application
Lifecycle Management Portion.

 double startLat, startLng, destLat, destLng;
 Location xyz;
 double zoomB;
 DispatcherTimer timer = new DispatcherTimer();

 protected override void LoadState(Object navigationParameter, Dictionary<String,
 Object> pageState)
 {
 if (pageState != null)
 {
 if (pageState.ContainsKey("FromLocation"))
 {
 if (pageState["FromLocation"] as String == "1")
 {
 rbFromLocation.IsChecked = true;
 rbFromAddress.IsChecked = false;
 }
 else
 {
 rbFromLocation.IsChecked = false;
 rbFromAddress.IsChecked = true;
 }
 }
 if (pageState.ContainsKey("Address"))
 {
 txtAddress.Text = pageState["Address"] as string;
 }
 if (pageState.ContainsKey("Ballpark"))
 {
 cmbTeam.SelectedIndex = int.Parse(pageState["Ballpark"] as string);
 }
 RouteDirections();
 txtItinerary.Text = pageState["Directions"] as string;

 myMap.MapType = MapType.Aerial;
 double zoomA = myMap.ZoomLevel;
 xyz = new Location(myMap.Center);
 if (pageState.ContainsKey("Lat") && pageState.ContainsKey("Lng"))
 {
 xyz.Latitude = double.Parse(pageState["Lat"] as string);
 xyz.Longitude = double.Parse(pageState["Lng"] as string);
 }
 zoomB = zoomA;
 if (pageState.ContainsKey("ZoomLevel"))
 {

 zoomB = double.Parse(pageState["ZoomLevel"] as string);
 //ShowMessage(zoomA.ToString() + " " + zoomB.ToString(), "Zoom Levels");
 }
 // zoom and center is set vai timer so myMap has a chance to
 // first refresh the route directions
 timer.Interval = TimeSpan.FromSeconds(2);
 timer.Tick += timer_Tick;
 timer.Start();
 }
 }

 private void timer_Tick(object sender, object e)
 {
 //ShowMessage("Timer fired.", "Test");
 myMap.Center = xyz;
 myMap.SetZoomLevel(zoomB);
 timer.Stop();
 }

 protected override void SaveState(Dictionary<String, Object> pageState)
 {
 if (rbFromLocation.IsChecked == true)
 {
 pageState["FromLocation"] = "1";
 }
 else
 {
 pageState["FromLocation"] = "0";
 }
 pageState["Address"] = txtAddress.Text;
 pageState["Ballpark"] = cmbTeam.SelectedIndex.ToString();

 pageState["ZoomLevel"] = myMap.ZoomLevel.ToString();
 pageState["Lat"] = myMap.Center.Latitude.ToString();
 pageState["Lng"] = myMap.Center.Longitude.ToString();
 pageState["Directions"] = txtItinerary.Text;
 }

Branding: Name, Logos, and Splash Screens
While it is important to keep technical requirements and guidelines in mind, branding is a
critical element that affects the success of an app in the Windows Store. Branding involves
choosing a name and designing logos and splash screens for your app.

Your app needs a name. While names up to 256 characters are allowed, you should select a
name that is much shorter than that. Your name must be unique to any other that is in the
Windows Store. Once you come up with a name, search the store to verify that the name is
not already taken. However, since names can be reserved by a developer up to 1 year in
advance of submission, a registered name may not yet appear in the Store. It is therefore a
good idea to perhaps have a couple backup names as well. The name should be consistent
throughout the program wherever it appears. If more than one name appears in different
places or if it varies from the registered name, the app will likely be rejected for inclusion in
the Windows Store.

Logos are a very important part of branding the app. In the Assets folder are several default
logo graphics: Logo.png, SmallLogo.png, SplashScreen.png, and StoreLogo.png. These are
generic with a logo of a square containing an X. It is recommended that these be saved as a

transparent PNG file in the Assets folder of your project, though a JPG image may be
substituted if transparency is not necessary. The background will automatically be set to the
background color that you choose in the package.appxmanifest when displayed.

Figure 4 – The default SplashScreen.png file with generic logo. The blue background is
actually transparent so the image is chosen against the default background color.

While the images can be edited directly in Visual Studio simply by opening them, it may be
preferable to use another bitmap editor that you are comfortable with. Adobe Photoshop is a
good option. Use the same logo throughout the images for consistency.

Figure 6 – The 50x50 pixel StoreLogo.png image is used for the tile display in the Windows
Store. Note that the image may be simply a white (or other single color) logo on a
transparent background (left), a multicolor logo on a transparent background (center), or an
image with no transparent pixels.

The chart below shows the sizes for each image. Four images are required (highlighted and
in bold in the table), the others are optional. Recall from Lesson 4 that the different
resolution images should be distinguished in their names as follows:

imageName.Scale-80.png (for device that has a height resolution of 600 pixels)
imageName.Scale-100.png (for device that has a height resolution of 768 or 800 pixels)
imageName.Scale-140.png (for device that has a height resolution of 1080 pixels)
imageName.Scale-180.png (for device that has a height resolution of 1440 pixels)

Image 80% size 100%

size
140%
size

180%
size

Use

Store Logo

None 50x50 70x70 90x90 Used by Windows Store in the
Details section and search results

Small Logo

24x24 30x30 42x42 54x54 Used as the square tile image of the
app in the Start screen

Logo

120x120 150x150 210x210 270x270 Used as the square tile image of the
app in the Start screen

Wide Logo

248x120 310x150 434x210 558x270 Used as the wide tile on the Start
screen

Badge Logo

None 24x24 33x33 43x43 Used for Badge apps on the Lock
Screen

Splash
Screen

None 620x300 868x420 1116x540 Displayed while the app is launching

There are also optional target sizes of 256x256, 48x48, 32x32 and 16x16.

Up to four promotional images may also be provided during the app submission process, in
addition to those included in your app's package. These must be .PNG images and sized as
414x180, 414x168, 558x756, and 846x468. These are used for marketing in the store such
as those apps featured in the Store’s spotlight. The first two sizes are the most frequently
used, and while all four are optional, it is recommended that you provide all four images.
Providing these does not guarantee that your app will be featured, but not providing them
could limit your promotional opportunities.

It is recommended that the Splash Screen and other logos should be kept to a minimum
(remember the Bauhaus design influence discussed in Lesson 2). Use transparent graphics
that can blend in with the background color. Consider starting your design with the 180%
Splash Screen image at a resolution of 1116x540. Create a simple logo that communicates
the main idea of your app.

Figure 5 – The logo for the Take Me Out to the Ballgame app is white with a transparent
background. It is shown here as the app’s SplashScreen image with the selected
background color, Sedona Red.

TIP: Here is a look at how the Take Me Out to the Ballgame logo was created.
The chosen background color for the manifest was Sedona Red (#C51230), which is the
principal team color of the Arizona Diamondbacks. Starting with a solid background layer of this
color in Photoshop, the developer created a new image that was 1116x540 in size. He added the
baseball as a separate layer and selected the stitching, then deleted it so the background color

http://msdn.microsoft.com/en-us/library/windows/apps/br230835.aspx

showed through. A third layer consisted of the arrow (a preset shape in Photoshop’s custom
shape tool) using a white fill. He stroked the arrow on the outside with a 4-pixel-width stroke.
Then, that stroke was selected (using the magic wand tool) and deleted. With the stroke area
still selected, the baseball layer underneath was made the active layer and the stroke area was
deleted so the underlying background could be seen. The background layer’s visibility was turned
off, leaving only the white logo of the baseball and arrow layers visible. The image was saved as
a PSD file first (for future use) then saved out as a PNG file keeping its transparency. It was
saved with a filename of SplashScreen.Scale-180.png. The image size was reduced to 848x429
and saved as SplashScreen.Scale-140.png. Then, it was further reduced to a size of 620x300
and saved as SplashScreen.Scale-100.png. The file’s image size and/or canvas size was modified
and scaled appropriately to create all the other logo files at the three different resolutions.

Figure 6 – Photoshop with its flexibility of layers is an ideal tool for creating the transparent PNG
logo images.

The images were then all imported into the project’s Asset’s folder by right-clicking the folder in
the Solution Explorer and choosing “Existing Item” from the Add submenu.

Figure 7 – The logo and splash screen images are imported into the Assets folder.

Setting Up the Manifest
The next step is to specify the name, background color, and graphics in the manifest
document. Open the package.appxmanifest. Provide a name, default language if other than
U.S. English, a brief description, and choose the supported rotations. Remember, while the
name can be up to 256 characters, it is preferable to keep it short.

Figure 8 – Provide a display name, description, and specify the supported rotations.

Scroll down in the manifest and enter a short name (maximum of 40 characters). Specify a
background color as a 24-bit hexadecimal value for the tile background color (on the Start
screen) and the Splash screen. It is recommended they are the same, but it is not a
requirement.

Figure 9 – Provide a short name and background colors for the Start Screen tile and the
Splash Screen in the manifest.

Scroll down some more and specify the images for the Logo, Wide Logo, Small Logo, Target
images, Store Logo, and Splash Screen, as well as the Badge Logo if pertinent. While only
the 100% views of the Logo, Small Logo, Store Logo, and Splash Screen are required, it is
recommended that you provide images for all sizes and for the Wide Logo as well.

Figure 10 – The various sized Logo and Splash Screen images are set up in the manifest.

In the Packaging tab of the manifest, verify the name, provide a version, and provide the
Publisher display name as you would like it to appear. The version number will be used to
provide automated update notices to the user as the app is modified. Thus, if submitting an
update to an app that is already in the Store, it is critical that the version number be
increased.

Figure 11 – Check the Package name, version number, and Publisher display name in the
Packaging tab of the manifest.

Save the project after making these changes.

Testing With the Windows App Certification
Kit
The Windows App Certification Kit (WACK) is available free of charge from Microsoft. This
tool is used to analyze your app after submitting it to the store to verify that it meets the
technical qualifications. WACK examines the manifest to ensure that it is correctly setup and
that all necessary capabilities and declarations have been established. It confirms that the
image resources for the logos are present in the package. The WACK also checks the
stability of the app—testing for crashes and errors. It also verifies that the app can be
suspended and re-launched without issue.

To test with WACK, complete the following steps:

Step 1: The app needs to be reconfigured for a Release Build rather than a Debug Build.
Open the Configuration Manager from the Build menu. Set the configuration to Release
rather than Debug.

Figure 12 – The Build configuration must be set to Release rather than Debug and the
project then rebuilt.

TIP: Because the inclusion of Bing Maps requires that you target a specific processor, the
option of Any CPU will cause errors. In this case, you must create three different packages,
each one targeted to the different platforms of x64, x86, and ARM processors. In submitting
the app for inclusion at the Windows Store, all three packages will be uploaded. The
appropriate package will be used to install the app to the client’s device based on their
device’s processor. Normally, you can create one package that handles all three CPUs by
selecting “Any CPU” in the Platform dropdown.

Step 2: Download and install the Windows App Certification Kit (WACK) from the Windows
Dev Center – Windows Store Apps website. Follow the online instructions for downloading
and installing the certification kit.

http://msdn.microsoft.com/en-US/windows/apps/bg127575

Figure 13 – Click the ‘Get the standalone Windows 8.1 SDK’ link to download and install
the Windows App Certification Kit.

Step 3: Open the WACK. The easiest way to do this is to search for “appcertui” in the All
Apps screen. Click the tile for the “Windows App Cert Kit”.

Figure 14 – To find and execute the Windows App Certification Kit, one can search for
“appcertui” in the App Apps screen.

Step 4: When the WACK launches, you will have the opportunity to validate a Windows
Store App, a Desktop App, or a Desktop Device App. Choose the first option.

Step 5: Locate and select the app to be validated in the resulting screen.

Figure 15 – Select the top option of “Validate Windows Store App” when the Windows App
Certification Kit launches (left). In the subsequent screen (right) find and select the app you
want to test.

Step 6: Click the Next button in the lower right. The test will commence, and you will likely
see your app start and close several times. The test will take 10 to 15 minutes. When
completed, a feedback screen will show whether the app passed or failed the test.

Figure 16 – The test takes about 10 to 15 minutes and will likely launch and close the app
several times (left). When complete, the overall result of “PASSED” or “FAILED” will be
shown with an option to view the detailed results.

If you passed the test, congratulations! You have overcome the technical hurdle of getting
your app accepted to the Windows Store. If you failed, examine the detailed report, make
the necessary changes, and then retest. (You may examine the detailed report if you
passed as well to further relish in the result!)

Figure 17 - The detailed report of the WACK test results can be saved as an XML file and
opened in a browser. The report will show the various areas tested. Use it to make
appropriate corrections if the app did not pass.

Submitting the App to the Windows Store
You will need to open a Developer account on the Windows Store to upload your project to
the Store. This carries a cost of $49 for an individual account or $299 for a corporate
account. Students of DreamSpark institutions may obtain a free license through the
DreamSpark site.

To submit an app to the Windows Store, complete the following steps:

Step 1: From the Project menu, choose “Store” and “Open Developer Account”. It will
launch the Windows Developer website. Sign in by clicking the link in the upper right and
use your Microsoft Account login credentials.

Figure 18 – To submit an app to the Store, you must open a Developer Account.

Step 2: Click the “Join Now” button in the resulting screen.

Step 3: Follow the online instructions to setup your account, providing the required contact
information. You will need a credit card to purchase the account. If you plan to sell apps,
you will need to provide tax and bank account information. Otherwise you can proceed to
the step of reserving your app name in the Store.

Figure 19 –If you plan to sell apps, you will need to set up a payment account. If you are
going to only offer free apps, you can proceed to the “Get Started” screen.

Step 4: In Visual Studio, associate the app with the Windows Store. From the Project
menu, choose ‘Store’ and then ‘Associate App with Store’. Follow the instructions provided.
You will be asked to sign in to your Developer Account.

Step 5: Take screen captures or your project. You must provide at least one screen capture
for the Store. To accomplish this, go to the Project > Store > Capture Screenshots… menu
item. This will build your app and launch the simulator. In the simulator, click the “Copy
screenshot” button on the right to take the snapshot(s). You may upload up to nine images.

Figure 20 – Screenshots are taken form the simulator for submission to the Store.

Step 6: Create the App Package(s). Chose Project > Store > Create App Packages. Sign in
to your Developer account and select the app and click ‘Next’. In the resulting screen,
choose the processors for which you desire to create target packages. For the “Take Me Out
to the Ballgame” package, it was necessary to create three separate packages because of
an issue with the Bing Maps. In most cases, the Neutral option can be selected to cover all
three processors.

Figure 21 – In building the packages, an option is provided to target specific processors.

When completed, you may also choose to launch the WACK again. This is a good idea.
Launching the WACK earlier was suggested to address any potential problems before you
began the submission process.

Step 7: In your Developer Account, which you can access on the “Become a Windows
Phone & Windows Store developer!” page from the Windows Dev Center – Windows Store
Apps website, sign in and access the Dashboard. Open the link to the associated app.

https://appdev.microsoft.com/StorePortals/en-US/Account/signup/start
https://appdev.microsoft.com/StorePortals/en-US/Account/signup/start

Figure 22 – The Dashboard of the Windows Store Developer Account is where information
on associated apps is edited and where the screen shots and packages are uploaded.

Step 8: Edit the info on the app by clicking the Edit link in the lower right of the app
reference. You will be asked to provide pricing information, declare services, provide an age
rating, declare if any cryptography is utilized in the app, upload the packages, provide a
description of the app for your customers, and add any notes you would like to give the
testers.

Figure 23 – A checklist in the Dashboard for the app provides easy-to-follow steps in
preparing your app for submission.

Figure 24 – The package(s (extension appxupload) can be dragged from the projects
AppPackages folder to the Developer account page.

After uploading the packages, provide a description of the app, list any features you would
like to point out, and upload the images created in step 5 of this section (“Submitting the
App to the Windows Store”). The screen shots will appear in the User’s Pictures Library in a
Windows Simulator folder. The images must be 1366x768 in size and should not be
modified before uploading; do not enhance them in Photoshop or add additional titling and
so on. For each image, provide a description of up to 200 characters. You can also upload
up to four promotional PNG graphics of sizes 846x468, 558x756, 414x468, 414x180. These
may be used by the Microsoft Store staff for promotion of the app or if the app is featured in
the Store. These are optional. Keywords for the search engine are also supplied, and it is a
good idea to provide a privacy statement.

Figure 25 – Provide up to four promotional images.

Step 9: When all the above steps are in order, click the Submit button on the Dashboard.
You can track the progress through the steps of pre-processing, security tests, technical
compliance, content compliance, release, and signing and publishing. The process can take
5 or 6 days.

Figure 26 – The approval process may take 5 or 6 days after the app is submitted. The
progress can be tracked in the developer’s Dashboard.

	Designing for the Store
	Branding: Name, Logos, and Splash Screens
	Setting Up the Manifest
	Testing With the Windows App Certification Kit
	Submitting the App to the Windows Store

