Lesson 10 Guide: Deployment via the
Windows Store

Table of Contents

DesSigNiNg fOr the SEOIe......ciivuiiiiiiiiiiiiiiiirc et ressssessessssestssssssstsssssssesssssssenssssnns 2
Branding: Name, Logos, and SPlash SCreens.........cccceviiiiuniiiiinniiiiinuiiiiinneiiesmeiiessiisiisssisansns 7
Setting Up the Manifestccivviiiiiiiiiiiiiiiiiiiirie e ssessssssssasssssesssssssesssssssenssssssens 11
Testing With the Windows App Certification Kit.........ccoueeuiirieeiiiiiiniiirerccrreerccsreee e reneeeeeenens 13

Submitting the App to the WIndoWs StOre.......cccuceiiiieeieiieiicciiriccrrreseererasessennsessennsssssensssssennssssnens 18

Designing for the Store

While an automated program called the Windows Application Certification Kit (WACK) is
used to ensure technical conformation, human testers evaluate the submitted app’s design,
usability, performance, and worthiness.

Here’s a brief checklist of some design considerations:

Strive to use the Segoe font family.

Use a title header that is 120—-140 pixels in height.

Maintain a left margin of 120 pixels in full landscape view.

Maintain at least 20 pixels between interactive controls.

Provide alternative designs or modifications for filled and snapped views. If the app

will support portrait orientation, it must provide alternative screen design for that

state.

O Manage data persistence to provide a continuous experience if the app is terminated
and then re-activated.

ooooo

In this lesson, the user interface of the Take Me Out to the Ballgame assignment will be
modified for Store deployment.

In the Take Me Out to the Ballgame app, a 120-pixel left margin was established by
providing an additional column of 120 pixels. Column 0 is blank. Column 1 contains all the
Ul controls (except the map), and the third column, Column 2, contains the Bing map
control.

Take Me Out to the Ballgame

mpidqgfield
.I.iapFF!.-‘.';-h-‘ currentlocation . . . Iﬂ Aerial v &5
3

o Map FROM this address . . . / P ,b-§ Edg ewate,r/ m

S g o
_TO this ballpark: ; o par e ~

North Bergen & 5 e,
: g L " Consolidated _E"!‘md d
West New York o S o T Gouseer
g 3 Rt LaGUardia {

Figure 1 — The app conforms to the standard 120-pixel left margin in the full landscape
state.

XAML Code Snippet for BasicPagel.xaml

<Grid Background="Green">
<Grid Style="{StaticResource LayoutRootStyle}" >
<Grid.RowDefinitions>
<RowDefinition Height="140"/>
<RowDefinition Height="*"/>
</Grid.RowDefinitions>

<TextBlock x:Name="pageTitle" Margin="120,0,0,40"
Text="Take Me Out to the Ballgame" Style="{StaticResource
PageHeaderTextStyle}" TextWrapping="Wrap"/>

<Grid Grid.Row="1">
<Grid.ColumnDefinitions>
<ColumnDefinition x:Name="CollA" Width="120"/>
<ColumnDefinition x:Name="CollB" Width="3@0"/>
<ColumnDefinition Width="*"/>
</Grid.ColumnDefinitions>
<Rectangle Grid.Row="1" Fill="DarkGreen"/>
<Rectangle Grid.Row="1" Grid.Column="1" Fill="DarkGreen"/>
<RadioButton x:Name="rbFromLocation" Grid.Row="1" Grid.Column="1"
Content="Map FROM currentLocation . "
HorizontalAlignment="Left" Height="23" Margin="0,13,0,0"
VerticalAlignment="Top" Width="280" IsChecked="True"/>
<RadioButton x:Name="rbFromAddress" Grid.Row="1" Grid.Column="1"
Content="Map FROM this address . . . " HorizontalAlignment="Left"
Height="23" Margin="0,50,0,0" VerticalAlignment="Top" Width="280"/>
<TextBox x:Name ="txtAddress" Grid.Row="1" Grid.Column="1"
HorizontalAlignment="Left" Height="55" Margin="0,80,0,0"
TextWrapping="Wrap" Text="7050 S. 24th Street, Phoenix, AZ, 85042"
VerticalAlignment="Top" Width="280"/>
<TextBlock Grid.Row="1" Grid.Column="1" HorizontalAlignment="Left"
Height="15" Margin="0,146,0,0" TextWrapping="Wrap" Text="...TO this
ballpark:" VerticalAlignment="Top" Width="168" FontSize="14"/>
<ComboBox x:Name="cmbTeam" Grid.Row="1" Grid.Column="1"
HorizontalAlignment="Left" Margin="0,166,0,0" VerticalAlignment="Top"
Width="280"/>
<TextBox x:Name="txtItinerary" Grid.Row="1" Grid.Column="1"
HorizontalAlignment="Left" Height="300"
Margin="0,220,0,0" TextWrapping="Wrap" Text="Directions will be shown
here." Foreground="White" Background="DarkGreen"
VerticalAlignment="Top" BorderThickness="1"
ScrollViewer.VerticalScrollBarVisibility="Auto" Width="280" />
<Button x:Name="btnGetDirections" Grid.Row="1" Grid.Column="1" Content="Get
Directions" HorizontalAlignment="Left" Height="51" Margin="0,545,0,0"
VerticalAlignment="Top" Width="130" Click="GetDirections"/>
<Button x:Name="btnCenterZoom" Grid.Row="1" Grid.Column="1" Content="Zoom
Ballpark" HorizontalAlignment="Left" Height="51" Margin="150,545,0,0"
VerticalAlignment="Top" Width="130" Click="ZoomBallpark"/>
<bm:Map Grid.Row="1" Grid.Column="2" Credentials="Aj3Kc7F3dXDGy@-bmbnmurrkKlYf-
ylvzIuxzXproUTKIpyUblyfxgLTzgio9W_hy5" x:Name="myMap" />
</Grid>
</Grid>

The use of the blank column (“Col1A”) makes it easy to shift all the controls to the left in
the snapped visual state. A VisualStateManager is added to the XAML code. For the filled
state, the width of the left column is reduced to 20 pixels. Likewise the “pageTitle” textbox
is shifted left from 120 pixels to 20. These same animations occur in the Snapped state,
along with resizing and wrapping the title (“pageTitle” textbox). Note that the Visibility of
the map object (“myMap”) is set to Collapsed. This was done to compensate for a known

bug in the Bing maps that causes the app to crash if the map object has children levels in
the snapped view in Windows 8. Collapsing it seems to bypass the problem.

Addition to the XAML Code for BasicPagel.xaml

<VisualStateManager.VisualStateGroups>
<!l-- Visual states reflect the application's view state -->
<VisualStateGroup x:Name="ApplicationViewStates">
<VisualState x:Name="FullScreenlLandscape"/>
<VisualState x:Name="Filled">
<Storyboard>
<ObjectAnimationUsingKeyFrames Storyboard.TargetName="CollA"
Storyboard.TargetProperty="Width">
<DiscreteObjectKeyFrame KeyTime="0" Value="20"/>
</ObjectAnimationUsingKeyFrames>

<ObjectAnimationUsingKeyFrames Storyboard.TargetName="pageTitle"
Storyboard.TargetProperty="Margin">
<DiscreteObjectKeyFrame KeyTime="0" Value="20,0,0,40"/>
</0ObjectAnimationUsingKeyFrames>
</Storyboard>
</VisualState>
<VisualState x:Name="FullScreenPortrait"/>

<VisualState x:Name="Snapped">
<Storyboard>
<!-Collapse column @ to 20 pixels -->
<ObjectAnimationUsingKeyFrames Storyboard.TargetName="CollA"
Storyboard.TargetProperty="Width">
<DiscreteObjectKeyFrame KeyTime="0" Value="20"/>
</0ObjectAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames Storyboard.TargetName="myMap"
Storyboard.TargetProperty="Visibility">
<DiscreteObjectKeyFrame KeyTime="0" Value="Collapsed"/>
</0ObjectAnimationUsingKeyFrames>
<!-- The title gets smaller and wraps when snapped -->
<ObjectAnimationUsingKeyFrames Storyboard.TargetName="pageTitle"
Storyboard.TargetProperty="Width">
<DiscreteObjectKeyFrame KeyTime="0" Value="290"/>
</0ObjectAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames Storyboard.TargetName="pageTitle"
Storyboard.TargetProperty="VerticalAlignment">
<DiscreteObjectKeyFrame KeyTime="0" Value="Center"/>
</0ObjectAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames Storyboard.TargetName="pageTitle"
Storyboard.TargetProperty="Margin">
<DiscreteObjectKeyFrame KeyTime="@" Value="20,0,0,0"/>
</0ObjectAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames Storyboard.TargetName="pageTitle"
Storyboard.TargetProperty="FontSize">
<DiscreteObjectKeyFrame KeyTime="0" Value="38"/>
</0ObjectAnimationUsingKeyFrames>
</Storyboard>
</VisualState>
</VisualStateGroup>
</VisualStateManager.VisualStateGroups>

</Grid>

|</common:LayoutAwarePage>

Take Me Out to the Ballgame

afiald X
|

e}

@ 1izp FrOM cumrentiocation ...

0 Map F

Ot ball H

* Fairview '™

Consolidated
Edison

Figure 2 — In the Filled state, the controls and title are shifted to the left by changing the
margins of the title and reducing the width of the left-most column in row 1.

: 10:07 PM
ﬁBﬁ s W 3
Re Tl A /192013

Figure 3 — In the Snapped state, the title and controls are shifted to the left as they were
in the Filled state. The map is no longer visible, but directions can still be obtained.

Code was added to provide for data persistence if the app is terminated. The address,
selections, map, and directions are returned to their previous status when the app is re-
activated. The status of the controls and the latitude, longitude, and zoom levels of the map
are stored in the Save State method and re-instituted in the LoadState method. Note that a
timer was utilized to provide a slight 2-second delay in updating the map, allowing for the
screen to first be refreshed. See Lesson 8 for more information on application lifecycle
management techniques.

C# Code Snippet for BasicPagel.xaml Showing the Data Persistence/Application
Lifecycle Management Portion.

double startLat, startlLng, destlLat, destlLng;
Location xyz;

double zoomB;

DispatcherTimer timer = new DispatcherTimer();

protected override void LoadState(Object navigationParameter, Dictionary<String,
Object> pageState)

{
if (pageState != null)
if (pageState.ContainsKey("FromLocation"))
if (pageState["FromLocation"] as String == "1")

rbFromLocation.IsChecked = true;
rbFromAddress.IsChecked = false;

}
else
{
rbFromLocation.IsChecked = false;
rbFromAddress.IsChecked = true;
}
}
if (pageState.ContainsKey("Address"))
{
txtAddress.Text = pageState["Address"] as string;
}

if (pageState.ContainsKey("Ballpark"))

cmbTeam.SelectedIndex = int.Parse(pageState["Ballpark"] as string);
}
RouteDirections();
txtItinerary.Text = pageState["Directions"] as string;

myMap .MapType = MapType.Aerial;

double zoomA = myMap.ZoomLevel;

Xyz = new Location(myMap.Center);

if (pageState.ContainsKey("Lat") && pageState.ContainsKey("Lng"))

{
xyz.Latitude = double.Parse(pageState["Lat"] as string);
xyz.Longitude = double.Parse(pageState["Lng"] as string);

¥

zoomB = zoomA;

if (pageState.ContainsKey("ZoomLevel"))

{

zoomB = double.Parse(pageState["ZoomLevel"] as string);
//ShowMessage(zoomA.ToString() + " " + zoomB.ToString(), "Zoom Levels");

}

// zoom and center is set vai timer so myMap has a chance to

// first refresh the route directions

timer.Interval = TimeSpan.FromSeconds(2);

timer.Tick += timer_Tick;

timer.Start();

}
}
private void timer_Tick(object sender, object e)
{
//ShowMessage("Timer fired.", "Test");
myMap.Center = xyz;
myMap . SetZoomLevel (zoomB) ;
timer.Stop();
}
protected override void SaveState(Dictionary<String, Object> pageState)
{
if (rbFromLocation.IsChecked == true)
{
pageState["FromLocation"] = "1";
else
{
pageState["FromLocation"] = "@";
pageState["Address"] = txtAddress.Text;
pageState["Ballpark”] = cmbTeam.SelectedIndex.ToString();
pageState["ZoomLevel"] = myMap.ZoomLevel.ToString();
pageState["Lat"] = myMap.Center.Latitude.ToString();
pageState["Lng"] = myMap.Center.Longitude.ToString();
pageState["Directions"] = txtItinerary.Text;
¥

Branding: Name, Logos, and Splash Screens

While it is important to keep technical requirements and guidelines in mind, branding is a
critical element that affects the success of an app in the Windows Store. Branding involves
choosing a name and designing logos and splash screens for your app.

Your app needs a hame. While names up to 256 characters are allowed, you should select a
name that is much shorter than that. Your name must be unique to any other that is in the
Windows Store. Once you come up with a name, search the store to verify that the name is
not already taken. However, since names can be reserved by a developer up to 1 year in
advance of submission, a registered name may not yet appear in the Store. It is therefore a
good idea to perhaps have a couple backup names as well. The name should be consistent
throughout the program wherever it appears. If more than one name appears in different
places or if it varies from the registered name, the app will likely be rejected for inclusion in
the Windows Store.

Logos are a very important part of branding the app. In the Assets folder are several default
logo graphics: Logo.png, SmallLogo.png, SplashScreen.png, and StoreLogo.png. These are
generic with a logo of a square containing an X. It is recommended that these be saved as a

transparent PNG file in the Assets folder of your project, though a JPG image may be
substituted if transparency is not necessary. The background will automatically be set to the
background color that you choose in the package.appxmanifest when displayed.

Figure 4 — The default SplashScreen.png file with generic logo. The blue background is
actually transparent so the image is chosen against the default background color.

While the images can be edited directly in Visual Studio simply by opening them, it may be
preferable to use another bitmap editor that you are comfortable with. Adobe Photoshop is a
good option. Use the same logo throughout the images for consistency.

Dropbox #N i, Mind Games (Free) Cut The Rope
:: * %ok Productivity = 3| Y %k Games ‘%v % % % % & Games
. Free b Free

Figure 6 — The 50x50 pixel StoreLogo.png image is used for the tile display in the Windows
Store. Note that the image may be simply a white (or other single color) logo on a
transparent background (left), a multicolor logo on a transparent background (center), or an
image with no transparent pixels.

The chart below shows the sizes for each image. Four images are required (highlighted and
in bold in the table), the others are optional. Recall from Lesson 4 that the different
resolution images should be distinguished in their names as follows:

imageName.Scale-80.png (for device that has a height resolution of 600 pixels)
imageName.Scale-100.png (for device that has a height resolution of 768 or 800 pixels)
imageName.Scale-140.png (for device that has a height resolution of 1080 pixels)
imageName.Scale-180.png (for device that has a height resolution of 1440 pixels)

Store Logo None 50x50 70x70 90x90 Used by Windows Store in the
Details section and search results

Small Logo 24x24 30x30 42x42 54x54 Used as the square tile image of the
app in the Start screen

Logo 120x120 150x150 210x210 270x270 Used as the square tile image of the
app in the Start screen

Wide Logo 248x120 310x150 434x210 558x270 Used as the wide tile on the Start
screen

Badge Logo None 24x24 33x33 43x43 Used for Badge apps on the Lock
Screen

Splash None 620x300 868x420 1116x540 Displayed while the app is launching

Screen

There are also optional target sizes of 256x256, 48x48, 32x32 and 16x16.

Up to four promotional images may also be provided during the app submission process, in
addition to those included in your app's package. These must be .PNG images and sized as
414x180, 414x168, 558x756, and 846x468. These are used for marketing in the store such
as those apps featured in the Store’s spotlight. The first two sizes are the most frequently
used, and while all four are optional, it is recommended that you provide all four images.
Providing these does not guarantee that your app will be featured, but not providing them
could limit your promotional opportunities.

It is recommended that the Splash Screen and other logos should be kept to a minimum
(remember the Bauhaus design influence discussed in Lesson 2). Use transparent graphics
that can blend in with the background color. Consider starting your design with the 180%
Splash Screen image at a resolution of 1116x540. Create a simple logo that communicates

the main idea of your app.

Figure 5 — The logo for the Take Me Out to the Ballgame app is white with a transparent
background. It is shown here as the app’s SplashScreen image with the selected
background color, Sedona Red.

TIP: Here is a look at how the Take Me Out to the Ballgame logo was created.

The chosen background color for the manifest was Sedona Red (#C51230), which is the
principal team color of the Arizona Diamondbacks. Starting with a solid background layer of this
color in Photoshop, the developer created a new image that was 1116x540 in size. He added the
baseball as a separate layer and selected the stitching, then deleted it so the background color

http://msdn.microsoft.com/en-us/library/windows/apps/br230835.aspx

showed through. A third layer consisted of the arrow (a preset shape in Photoshop’s custom
shape tool) using a white fill. He stroked the arrow on the outside with a 4-pixel-width stroke.
Then, that stroke was selected (using the magic wand tool) and deleted. With the stroke area
still selected, the baseball layer underneath was made the active layer and the stroke area was
deleted so the underlying background could be seen. The background layer’s visibility was turned
off, leaving only the white logo of the baseball and arrow layers visible. The image was saved as
a PSD file first (for future use) then saved out as a PNG file keeping its transparency. It was
saved with a filename of SplashScreen.Scale-180.png. The image size was reduced to 848x429
and saved as SplashScreen.Scale-140.png. Then, it was further reduced to a size of 620x300
and saved as SplashScreen.Scale-100.png. The file’s image size and/or canvas size was modified
and scaled appropriately to create all the other logo files at the three different resolutions.

File Edit Image Layer Type Select Filter 3D View Window Help
Sample Size: PDint‘Samp‘Ie + Tolerance: 20 ¥ anti-alias ¥ Contiguous Sample All Layers Refine Edge...
sd * Saeenshot (289 % SplashScreenScale-180.psd @ 100% (Background, RGB/8) * > ¥ i e
0 20 250 300 400 150 500 500 : o Rl
Al
T

-" Adjustments Siyies

Add an adjustment

H2O%OHE

EAEEEME

Layers Chann

% R Doc: 544.9K/1.42M
‘*’, Mini Bridge Timeline

Figure 6 — Photoshop with its flexibility of layers is an ideal tool for creating the transparent PNG

logo images.

The images were then all imported into the project’s Asset’s folder by right-clicking the folder in
the Solution Explorer and choosing “Existing Item” from the Add submenu.

ALD QEBUG

W RN

000N %%

By

Erroe List

Organize = New folder

Decuments A
o Music
=, Pactures

Videos

+ Homegroup
B stepnen Hustedd:

s Computer

2, Local Disk (C)
= 05 (D)
= WDT50 DATA (E:)
& DVD RW Drive {F-

v

Wl Natwork

BN | A SIS |
Squane150n150Logo.Seale- 180 psd
Square310w150Logo.Scale- 100.0ng
Square3 10x150Logo.Scale-140png
Suate310x 150000, Scale-180.prg
Square10x150L0go.5cale- 180 pad
Square310x310Logo.Scale-100.png
Squane310n310Logo.Scale- 140 png
Square310x310Lago.5cale- 180png
Storelogo.Scate-100.009

Storelogs Scale-140,png

Storeloga Scale- 180,009

Storelogo Scale-180.psd
»

AcdEdptpalen - TaeNc iR A

T NTER » Screen Shots 10

File pame: | “Storelago Scale-100png” “Storelagase v | |All Files (“4)

&

Add |+ Cancel

Bl xaml.cs

Appoamilcs

Add
Scope to This
New Solution

Exclude From Project

Explorer View

Rl Solution Explorer

M o-2REB AR

y-

* 'O Newltem.,
‘o
W New Fiilder

Existing ftem.

W Clas.

Shift+Alt+C

Clrl+Shift+ A

b x

Cut Cirl+X SplashSereen Seale-180.png
Copy CuleC E Square150x1 5 oge Scale-100png
Square150n130Logo.Scale-140png

B Square150x150Logo Scale- 180.png

Delete Dl rer | Team Exploser

Rename

Open Folder in File Explorer P
pr Properties

Properties

Alt+Enter _l

Name Assets

> x

Figure 7 — The logo and splash screen images are imported into the Assets folder.

Setting Up the Manifest

The next step is to specify the name, background color, and graphics in the manifest
document. Open the package.appxmanifest. Provide a name, default language if other than
U.S. English, a brief description, and choose the supported rotations. Remember, while the
name can be up to 256 characters, it is preferable to keep it short.

StandardStyles.xaml|

BasicPage1.xaml|

App.g.i.cs

Package.appxmanifest* + X [EETa:ET LY RE])|Nay

Appxaml.cs

The properties of the deployment package for your app are contained in the app manifest file. You can use the Manifest Designer to set or modify one or more of the properties.

Application Ul

Capabilities

Declarations

Use this page to set the properties that identify and describe your app.

Display name: Take Me Qut to the Ballgame

Take_Me_Out_to_the_Ballgame_3.App

Entry point:
Default language:

Description:

Supported rotations: An opticnal setting taeT

Visual Assets:

en-US

Packaging

MoTE o aon

rovides a visual map and step-by-step driving directions from the kurrent location or a specified address
to any of the thirty Major League Baseball parks. Ideal for the traveler who wants to see a game while in
own or the die hard fan who has the aoal of visitihng all thirty parks.

]

.

oo ononiation prefarence

-

.

Landscape

[Portrait

Landscape-flipped [| Portrait-flipped

Apps designed to run on Windows 8 should support displays of different resolutions. Windows provides a simple way to do this via
resource loading. This section lists all the assets which are used in the manifest.

All Image Assets

Tile:

More information

Figure 8 — Provide a display name, description, and specify the supported rotations.

Scroll down in the manifest and enter a short name (maximum of 40 characters). Specify a

background color as a 24-bit hexadecimal value for the tile background color (on the Start

screen) and the Splash screen. It is recommended they are the same, but it is not a
requirement.

StandardStyles.xaml

BasicPage1.xaml| App.g.i.cs [E LR OERT 0 Gl BasicPage1.xaml.cs App.xaml.cs =

The properties of the deployment package for your app are contained in the app manifest file. You can use the Manifest Designer to set or modify one or more of the properties.

Application Ul

All Image Assets
Tile Images and Logos
Logo
Wide Logo
Small Logo
Store Logo
Badge Logo

Splash Screen

Capabilities Declarations Packaging

Tile:
Short name: Take Me Qut to the Ballgame

Show name:

Foreground text: Light h

Background color:

Notifications:

Toast capable: (not set) -

Lock screen notifications: (not set) -

Splash Screen:

Background color:

Log

Assets\Logo.png &

Figure 9 — Provide a short name and background colors for the Start Screen tile and the
Splash Screen in the manifest.

Scroll down some more and specify the images for the Logo, Wide Logo, Small Logo, Target
images, Store Logo, and Splash Screen, as well as the Badge Logo if pertinent. While only
the 100% views of the Logo, Small Logo, Store Logo, and Splash Screen are required, it is
recommended that you provide images for all sizes and for the Wide Logo as well.

StandardStylesxaml

BasicPage1.xaml App.g.i.cs LE BT DENTE ol Pl BasicPagel.xaml.cs App.xaml.cs -

The properties of the deployment package for your app are contained in the app manifest file. You can use the Manifest Designer to set or modify one or more of the properties.

Application Ul

Capabilities Declarations Packaging

Logo: e

Assets\Logo.png x

Scaled Assets

SlsIsls

270 x 270 px [=] 210x210px 150 x 150 px [=] 120x120px =]

Wide logo:
Assets\Square310x150Logo.png x

Scaled Assets

558x270px [434x210px [o] 310x150px [o] 248x120p0x] -

Figure 10 — The various sized Logo and Splash Screen images are set up in the manifest.

In the Packaging tab of the manifest, verify the name, provide a version, and provide the
Publisher display name as you would like it to appear. The version number will be used to
provide automated update notices to the user as the app is modified. Thus, if submitting an
update to an app that is already in the Store, it is critical that the version number be
increased.

StandardStylesxaml BasicPage1xaml App.g.i.cs LEMELEETTSERTED G I BasicPage 1.xaml.cs App.xaml.cs hd

The properties of the deployment package for your app are contained in the app manifest file. You can use the Manifest Designer to set or modify one or more of the properties.

Application Ul Capabilities Declarations Packaging
Use this page to set the properties that identify and describe your package when it is deployed.

Package name: 48ec337b-bd9b-4c41-a8f6-0ac3feeflef7

Package display nig

Revision:
0

Publisher: Choose Certificate...

Publisher display nafffe: ~ Stephen Hustedde

Package family name:

Version:

Figure 11 — Check the Package name, version number, and Publisher display name in the
Packaging tab of the manifest.

Save the project after making these changes.

Testing With the Windows App Certification
Kit

The Windows App Certification Kit (WACK) is available free of charge from Microsoft. This
tool is used to analyze your app after submitting it to the store to verify that it meets the
technical qualifications. WACK examines the manifest to ensure that it is correctly setup and
that all necessary capabilities and declarations have been established. It confirms that the
image resources for the logos are present in the package. The WACK also checks the

stability of the app—testing for crashes and errors. It also verifies that the app can be
suspended and re-launched without issue.

To test with WACK, complete the following steps:
Step 1: The app needs to be reconfigured for a Release Build rather than a Debug Build.

Open the Configuration Manager from the Build menu. Set the configuration to Release
rather than Debug.

Active solution configuration: Active solution platform:

Release W ‘ |)(64

Project contexts (check the project configurations to build or deploy):

Project Caonfiguration Platform Build

Take Me Out to the Ballgame 3 Release x64

Figure 12 — The Build configuration must be set to Release rather than Debug and the
project then rebuilt.

TIP: Because the inclusion of Bing Maps requires that you target a specific processor, the
option of Any CPU will cause errors. In this case, you must create three different packages,
each one targeted to the different platforms of x64, x86, and ARM processors. In submitting
the app for inclusion at the Windows Store, all three packages will be uploaded. The
appropriate package will be used to install the app to the client’s device based on their
device’s processor. Normally, you can create one package that handles all three CPUs by
selecting “Any CPU” in the Platform dropdown.

Step 2: Download and install the Windows App Certification Kit (WACK) from the Windows
Dev Center — Windows Store Apps website. Follow the online instructions for downloading
and installing the certification Kkit.

http://msdn.microsoft.com/en-US/windows/apps/bg127575

X
L oB(=0) 25 netpy//msdnmicrosof.com/en-Us/win O - € || 85 App architect... | i Choosing you... .Designingas_gHTMUHexoo_ @WindowsApp_ N X

Dev Center - Windows Store ap

DASHBOARD GET STARTED DESIGN MARKET

App arc| e How to Samples Reference Port your app Forums

Windows App Certification Kit

Before you submit your app for certification and listing in the Windows Store, use the Windows App Certification Kit to test your app and make sure it's ready to
go.

The Windows SDK includes the Windows App Certification Kit. You can use it To test your app on Windows RT, download the separate Windows App
to test your app for the Windows Store (for Windows 8.1 and Windows 8), and Certification Kit for Windows RT.
for the Windows 7, Windows 8, and Windows 8.1 Desktop App Certification

" s SDK for Windows 8.1 Note: To run Windows App Certification Kit on a Windows RT machine, the
kits policy needs to be installed. For details on installing the kits policy, see
ARM Kit Policy Installation.

Get the standalone Windows 8.1 SDK
(English only)

N Get the Windows App Certification Kit for Windows RT
=l (English only)

What's new

June 14, 2013: Windows App Certification Kit 3.1 is now available with an enhanced user experience. You can use this version to test the readiness of Windows
Store apps for Windows 8 and Windows 8.1 before onboarding, and for the Windows 7, Windows 8, and Windows 8.1 Desktop App Certification Programs. We've
updated the Windows App Certification Kit to give you a smooth experience. For example, you can now run tests in parallel to save time, and you have more
flexibility in selecting the tests you run.

New tests included in Windows App Certification Kit 3.1 are:
Supported directory structure: Ensures that apps don't create a structure on disk that results in files longer than MAX_PATH (260 characters). v

Figure 13 — Click the ‘Get the standalone Windows 8.1 SDK’ link to download and install
the Windows App Certification Kit.

Step 3: Open the WACK. The easiest way to do this is to search for “appcertui” in the All
Apps screen. Click the tile for the “Windows App Cert Kit”.

A p pS Results for "appcertui”

Search
Apps

appcertui

Apps
n Settings

Amazon
Bing
Finance
Games

Internet Explorer

Figure 14 — To find and execute the Windows App Certification Kit, one can search for

“appcertui” in the App Apps screen.

Step 4: When the WACK launches, you will have the opportunity to validate a Windows
Store App, a Desktop App, or a Desktop Device App. Choose the first option.

Step 5: Locate and select the app to be validated in the resulting screen.

Windows App Certification Kit 3.1 - O n

Windows App Certification Kit 3.1 - b

Select the validation to perform
lidate Windows Store App
st a Windows Store app for submission to the
1] .
(] indows Store
lidate Desktop App
[ﬁ st a desktop app to qualify for Windows Desktop
pp Certification
lidate Desktop Device App
st a desktop device app for compliance with
lue-added software requirements

Select an app to validate

We found the following apps on your system. Select the app you
want to validate from the list below. If you can't find your app,
click "My app isn't listed".

App Name Version Publisher ol

ESPUI‘IS 2.0.0.273 Microsoft Corp

Stephen Huste

ake Me Out to the Ballgame 1.0.0.0 Stephen

[7| TN IRT S TRy 7r Annn Commbannn
<

Mv app isn't listed

Cancel Back Next

Figure 15 — Select the top option of “Validate Windows Store App” when the Windows App
Certification Kit launches (left). In the subsequent screen (right) find and select the app you

want to test.

Step 6: Click the Next button in the lower right. The test will commence, and you will likely
see your app start and close several times. The test will take 10 to 15 minutes. When
completed, a feedback screen will show whether the app passed or failed the test.

(= (o

Validating Take Me Out to the Ballgame View Final Report
We are validating your app against the selected test(s). The app The validation process has finished.
may launch multiple times during this process. Please do not
Overall Result PASSED
_ Click here to view the results

Figure 16 — The test takes about 10 to 15 minutes and will likely launch and close the app

several times (left). When complete, the overall result of “PASSED” or “FAILED” will be
shown with an option to view the detailed results.

If you passed the test, congratulations! You have overcome the technical hurdle of getting
your app accepted to the Windows Store. If you failed, examine the detailed report, make
the necessary changes, and then retest. (You may examine the detailed report if you
passed as well to further relish in the result!)

x

CS(C0)| &) CAUsers\Stephen\AppDatalLocal\Micl O ~ C ; N ok &
. - . . ~
Windows App Certification Kit - Test Results
App name: Take Me Out to the Ballgame
App publisher: Stephen Hustedde
App version: 1.0.0.0
QS Version: Microsoft Windows 8 Pro (6.2.9200.0)
Kit Version: 31
Report time: 11/21/2013 7:40:59 PM
Overall result: PASSED
Crashes and hangs test
PASSED Crashes and hangs
App manifest compliance test
PASSED App manifest
Windows security features test
PASSED Binary analyzer
v
LOSSED fanned.flopuabzer

Figure 17 - The detailed report of the WACK test results can be saved as an XML file and
opened in a browser. The report will show the various areas tested. Use it to make
appropriate corrections if the app did not pass.

Submitting the App to the Windows Store

You will need to open a Developer account on the Windows Store to upload your project to
the Store. This carries a cost of $49 for an individual account or $299 for a corporate
account. Students of DreamSpark institutions may obtain a free license through the
DreamSpark site.

To submit an app to the Windows Store, complete the following steps:
Step 1: From the Project menu, choose “Store” and “Open Developer Account”. It will

launch the Windows Developer website. Sign in by clicking the link in the upper right and
use your Microsoft Account login credentials.

https://appdev.microsoftcom/Stor O ~ @ & Dev Center - Windo... %

Si
ignin ~
=& Windows | Dev Center - Windows Store apps Search Dev Center with Bing Jel
DASHBOARD GET STARTED DESIGN DEVELOP MARKET SUPPORT
B Windows Phone
develo PEer !
In your developer account, you can: How to register
= Submit free and paid apps to the Windows Store and Windows Phone 1. Sign in using the Microsoft account that you want to link to your
Store. developer account. If you don't have a Microsoft account, you can get
one here.
- Promote and distribute your apps around the world.
2. Pick whether you want to create an individual or a company account.
+ Test your Windows Phone apps with a real phone.
3. Tell us about you.
+ Manage your apps and track their progress.
4. Review the terms of use and your account details.
5. Have your credit card ready.
v

Figure 18 — To submit an app to the Store, you must open a Developer Account.
Step 2: Click the “Join Now” button in the resulting screen.

Step 3: Follow the online instructions to setup your account, providing the required contact
information. You will need a credit card to purchase the account. If you plan to sell apps,
you will need to provide tax and bank account information. Otherwise you can proceed to
the step of reserving your app name in the Store.

== https://appdev.microsoft.com/Stor p - ﬁ == Thank you

shustedde@gmail.com Sign out A
=8 Windows | Dev Center - Windows Store apps Search Dev Center with Bing Jel
Account type Account info Agreement Price Payment Purchase Thank you
Thank you for registering. You're now a Windows Store and Windows Phone developer!
We sent a receipt for this purchase to your developer email address.
O Set up a payout account ()
Set up the account into which you would like us to deposit the money from your sales. After you set up
your payout account, your next step is to fill out your tax forms. You must complete both steps for us to
pay you. You don't need this if you only offer free apps.
@ Get started
Go to your Dashboard where you can reserve the name of your first app. From your Dashboard you can
explore the Dev center, visit the community forums and learn more about writing apps for the Windows
Store.
v

Figure 19 —If you plan to sell apps, you will need to set up a payment account. If you are
going to only offer free apps, you can proceed to the “Get Started” screen.

Step 4: In Visual Studio, associate the app with the Windows Store. From the Project
menu, choose ‘Store’ and then ‘Associate App with Store’. Follow the instructions provided.
You will be asked to sign in to your Developer Account.

Step 5: Take screen captures or your project. You must provide at least one screen capture
for the Store. To accomplish this, go to the Project > Store > Capture Screenshots... menu
item. This will build your app and launch the simulator. In the simulator, click the “Copy
screenshot” button on the right to take the snapshot(s). You may upload up to nine images.

.MapFRmd currentLocation . .. El Aerial v

O Map FROM this address ...

Bonaventure Hotel, Los Angeles

..TO this ballpark:
Los Angeles Dodgers ~ .
—Dodgerl
e Stadium:

k Copy screenshot

4, take ramp right for Hill
rd Dodger Stadium

Figure 20 — Screenshots are taken form the simulator for submission to the Store.

Step 6: Create the App Package(s). Chose Project > Store > Create App Packages. Sign in
to your Developer account and select the app and click ‘Next’. In the resulting screen,
choose the processors for which you desire to create target packages. For the “Take Me Out
to the Ballgame” package, it was necessary to create three separate packages because of
an issue with the Bing Maps. In most cases, the Neutral option can be selected to cover all
three processors.

Select and Configure Packages

Cutput location:

|C:\Users\Stephen\Documents\Visual Studio 2012\Projects\Take Me Cut to the Ballgame 3\Take Me Cut to the Ballgame S\AppPackagd Izl

Version:
n o Jlo |l
Automatically increment

Select the packages to create and the solution configuration mappings:

Architecture Solution Configuration

1] Neutral | ARM Release (Any CPU)

V]| x86 ' Release (x86)

V1| x64 ' Release (Any CPU)

V1| ARM | Release (ARM)

Include public symbol files, if any, to enable crash analysis for the app

| Previous || Mext || Create || Cancel

Figure 21 — In building the packages, an option is provided to target specific processors.

When completed, you may also choose to launch the WACK again. This is a good idea.
Launching the WACK earlier was suggested to address any potential problems before you
began the submission process.

Step 7: In your Developer Account, which you can access on the “Become a Windows
Phone & Windows Store developer!” page from the Windows Dev Center — Windows Store
Apps website, sign in and access the Dashboard. Open the link to the associated app.

https://appdev.microsoft.com/StorePortals/en-US/Account/signup/start
https://appdev.microsoft.com/StorePortals/en-US/Account/signup/start

- https://appdev.microsoft.com/Store p - ﬁ Ci == Dev Center - Windo... %

shustedde@gmailcom | Sign out

== Windows | Dev Center - Windows Store apps Search Dev Center with Bing o

DASHBOARD GET STARTED DESIGN DEVELOP MARKET SUPPORT

My apps

Dashboard Apps in pragress

Submit an app

Explore Store trends
Financial summary Take Me Out to the Ballga...

Incomplete
Profile

Account
Payout
Tax o Release 1
Subscription
11/21/2013 Delete Edit

News

Free Phone developer account
Add Windows 8.1 packages
Increase in app roaming limits
Age ratings

Latest Windows ACK

Figure 22 — The Dashboard of the Windows Store Developer Account is where information
on associated apps is edited and where the screen shots and packages are uploaded.

Step 8: Edit the info on the app by clicking the Edit link in the lower right of the app
reference. You will be asked to provide pricing information, declare services, provide an age
rating, declare if any cryptography is utilized in the app, upload the packages, provide a
description of the app for your customers, and add any notes you would like to give the
testers.

1 hpsy//appdev.microsoftcom/Store O ~ @ @ | B Take Me Out to the .. X

shustedde@gmail.com Sign out A
BR Windows | Dev Center - Windows Store apps Search Dev Center with Bing I
DASHBOARD GET STARTED DESIGN DEVELOP MARKET SUPPORT
App name App name
Selling details J You reserved an app name.
Se"‘”ce? You can reserve other names for your app to use in different languages or to change your app's name.
Age rating Complete Learn more
Cryptography
Packages . .
s Selling details
P V Your free app is scheduled for release after it passes certification.
Notes to testers
Learn more
Complete
News ol
Free Phone developer account Services
Add Windows 8.1 packages ¢ Number of in-app offers: 0
Increase in app roaming limits Add push notifications, authenticate users, enable cloud storage, and define in-app offers.
Age ratings Complete Learn more
Latest Windows ACK
Age rating and rating certificates
J Windows Store age rating: 12+ Suitable for ages 12 and older
Learn more
Complete
Cryptography
J Declaration complete.
Learn more
Complete

Figure 23 — A checklist in the Dashboard for the app provides easy-to-follow steps in
preparing your app for submission.

O 5 morironmivocomsion £ - @ M TekeMeowiove.. x NSRRI |
Take Me Out to the Ballgame: Release 1

App name
Sefling details
Senmces

Age: rating
Cryptography
Packages
Descripban
MNotes to testers

News

Free Phone developer account
Ada Windows 8.1 packages
Increase in app foaming limits
Age ratings

Latest Windows ACK

Home thare View ~ ﬂ‘
B 0. Ty Bl selecat |
T (e = 7K Delete -
i] DE l.. ove to * 7% Delete \l”._'_- B A o
Packages Copy . Pate & Brcopyto - =hinename Im Propadies o | 2B e seienion
Use the control 1o upload the packages (the appxupload file) that you create ety > s i o 4 s
package are specific to your Windows Store developer account, To build the ik e s e i |
Microsoft account that you use with your Windows Store developer account. @ © = T b =« TakeMe. » AppPackages » v & Search AppPackages P
A Favorites & Name
m Take Me Qut to the Baligame 3_1.0.0.0_xi4.apprupload L. Take Me Out to the Baligame 3_1.0.0.0_x64_Test
7 Libraries). Take Me Out to the Ballgame 3_1.00.0_xB6_Test
Uplodcling:s - Documents). Take Me Out to the Ballgame 3_1.0.0.0_ARM_Test
m Take Me Out to the Baligame 3_1.0.0.0_xB6apprupload A Musie | Take Mé Out to the Baligame 3_1.0.0.0_x64.appaspioad
=5 Pictures 1 R
il APRXUPLOAD File

Uploading...

- Vidaot LI Take! Size: 506 MB pplont
Date modified: 11/23,/2013 12:59 PM

m Take Me Out to the Baligame 3_1.0.0.0_ARM.appxupload

Uploadimg. & R
[l stephen Hustedd,
& Computer

Windows 8.1 < Local Disk (€
You haven't uploaded any packages for Windows 8.1 (Windews 8 packages ff = 9501 |l
users running Windows 8.1) Leam mare -~ WDT50 DATA (E)

«& €D Drive (F) Audl

w0 S

Windows 8 Gitems Jitems selected 145MB Stare: 3k Shared

You haven't uploaded any packages for Windows 8. Leamn more

Uploading your app's packages. Don't leave this page until this finishes, If you go te another page, your packages might not fimish upleading., w

Figure 24 — The package(s (extension appxupload) can be dragged from the projects
AppPackages folder to the Developer account page.

After uploading the packages, provide a description of the app, list any features you would
like to point out, and upload the images created in step 5 of this section (“Submitting the
App to the Windows Store”). The screen shots will appear in the User’s Pictures Library in a
Windows Simulator folder. The images must be 1366x768 in size and should not be
modified before uploading; do not enhance them in Photoshop or add additional titling and
so on. For each image, provide a description of up to 200 characters. You can also upload
up to four promotional PNG graphics of sizes 846x468, 558x756, 414x468, 414x180. These
may be used by the Microsoft Store staff for promotion of the app or if the app is featured in
the Store. These are optional. Keywords for the search engine are also supplied, and it is a
good idea to provide a privacy statement.

ind your way to the game!

846x468

Visiting'a Major League City?
Find the way to the game!

Find the way
to the game!

558x756

Find the way to the game!

414x468

Figure 25 — Provide up to four promotional images.

Step 9: When all the above steps are in order, click the Submit button on the Dashboard.
You can track the progress through the steps of pre-processing, security tests, technical
compliance, content compliance, release, and signing and publishing. The process can take
5 or 6 days.

I nttps//appdev.microsoftcom/Store O ~ @ € || B Take Me Out to the .. X

Take Me Out to the Ballgame: Release 1

Certification status

Learn more

™ Pre-processing

J Usually done within 1 hour

)

-

In progress

Security tests

Usually done within 3 hours

Technical compliance

Usually done within & hours

Content compliance
Usually takes about 5 days

Release

Waiting until the app passes certification

Signing and publishing

Usually done within 4 hours

Figure 26 — The approval process may take 5 or 6 days after the app is submitted. The

progress can be tracked in the developer’s Dashboard.

	Designing for the Store
	Branding: Name, Logos, and Splash Screens
	Setting Up the Manifest
	Testing With the Windows App Certification Kit
	Submitting the App to the Windows Store

